
	

Project	Report	
	

AniMap:	Animal	Tracker	And	Health	Monitoring	Application	
	

Name:	Gearoid	Lacey	
	

Student	Number:	C00183380	
	

Due	date:	5th	April	2017

	 2	

Gearoid	Lacey	

Table	of	Contents	

Abstract	..	5	

1	Introduction	...	6	

2	Project	Description	..	7	

2.1	What	is	AniMap	..	7	
2.2	Core	components	of	AniMap	..	7	
2.3	NanoTracker	...	8	
2.3.1	Brief	Description	...	8	
2.3.1	Rsterm	..	9	

2.4	Android	Application	...	12	
2.4.1	Brief	Description	...	12	
2.4.2	Home	screen	..	12	
2.4.3	Register	screen	...	13	
2.4.4	Change	Password	..	14	
2.4.5	Login	screen	..	15	
2.4.6	Menu	screen	..	15	

2.4.6.1	Add	Animal	Profile	screen	..	16	

2.4.6.2	Create	Boundary	screen	...	17	

2.4.6.3	Latest	Location	screen	..	19	

2.4.6.4	Analyse	Paths	screen	...	20	

2.4.6.5	GPS	Configuration	screen	..	21	

2.4.6.6	Cluster	Locations	screen	..	22	

2.4.6.7	Update	Animal	Profile	screen	..	23	

2.4.6.8	Delete	Animal	Profile	screen	..	24	

2.4.6.9	Logout	Menu	Option	..	25	

2.5	Flask	API	..	26	
2.5.1	MySQL	Database	...	26	

3	Conformance	To	Specification	and	Design	..	27	

	 3	

3.1	Use	Case	Changes	...	27	
3.1.1	Omitted	Use	Cases	...	27	

3.1.1.1	Isolate	Animal	Use	Case	...	27	

3.1.1.2	Store	User	Credentials	Use	Case	...	28	

3.1.1.3	Retrieve	GPS	Data	Use	Case	..	28	

3.1.2	Amended	Use	Cases	...	28	

3.1.2.1	Login	Use	Case	..	28	

3.1.2.2	Register	Use	Case	..	29	

3.1.2.3	Logout	Use	Case	...	29	

3.1.2.4	Change	Password	Use	Case	..	29	

3.1.2.5	Analyse	Path	Use	Case	..	30	

3.1.2.6	Display	Current	Location	Use	Case	...	30	

3.1.2.7	Set	GPS	Interval	Use	Case	..	30	

3.1.2.8	Store	GPS	Configuration	Use	Case	...	31	

3.1.2.9	Create	Boundary	Use	Case	..	31	

3.1.3	Additional	Use	Cases	..	31	

3.1.3.1	Cluster	Locations	Use	Case	...	31	

3.1.3.2	Delete	Animal	Profile	Use	Case	...	33	

3.1.3.3	Speed	Alert	Use	Case	...	33	

3.1.4	Summary	of	Use	Case	Adjustments	...	33	
3.1	Database	Changes	..	33	

4	Learning	Outcomes	..	35	

4.1	Technical	Outcomes	..	35	
4.1	Personal	Outcomes	...	36	

5	Project	Review	...	38	

5.1	What	Went	Right	..	38	
5.2	What	Went	Wrong	...	39	
5.3	Future	Feature	..	41	

6	Acknowledgements	...	42	

	 4	

Appendix	A.	USB	Port	Complication	Correspondence	..	43	

Appendix	B.	Incorrect	Python	Version	Correspondence	..	45	

Appendix	C.	Missing	Micro-Controller	Documentation	..	47	

Appendix	D.	Floating	Numbers	Support	Correspondence	48	

	

	

	

	 	

	 5	

Abstract	

	

The	aim	of	this	document	is	to	provide	an	overview	of	the	project.	This	overview	

will	include	a	description	of	the	project,	a	section	documenting	the	end	products	

conformance	 to	 the	 original	 design	 document	 and	 functional	 specification,	 a	

section	on	the	learning	outcomes	and	a	section	documenting	an	overall	review	of	

the	project.	 	

	 6	

1	Introduction	

	

The	 purpose	 of	 this	 document	 is	 to	 provide	 an	 outline	 to	my	 project	 AniMap.	

AniMap	is	a	proof	of	concept	project	that	aims	to	try	and	determine	the	source	of	

Tuberculosis	 (hereby	 referred	 to	 as	 TB)	 in	 a	 herd	 of	 cattle	 by	 recording	 an	

animal’s	location	in	a	field	using	a	GPS	device	called	NanoTracker.	

	

The	overview	of	this	project	will	begin	 in	the	project	description	component	of	

this	document.	This	section	will	provide	a	description	of	each	use	case	within	the	

mobile	 application,	 which	 will	 be	 accompanied	 by	 various	 annotated	

screenshots.	

	

Following	 this	 a	 section	 documenting	 the	 mobile	 applications	 conformance	 to	

the	original	functional	and	design	specification	will	be	supplied.	This	section	will	

detail	 the	 differences,	 if	 any,	 in	 the	 use	 cases	 described	 in	 the	 functional	

specification.	This	section	will	also	detail	any	differences,	if	any,	in	the	database	

design	and	how	the	application	functions	overall.	

	

In	 the	next	 section	all	 learning	outcomes	gained	over	 the	 course	of	 the	project	

will	 be	 documented.	 The	 learning	 outcomes	will	 be	 divided	 into	 two	 sections,	

technical	and	personal.	

	

A	 section	 documenting	 problems	 I	 encountered	 over	 the	 course	 of	 the	 project	

will	also	be	created.	As	well	as	documenting	the	errors	encountered	during	the	

project	this	section	will	also	include	the	resolution	for	each	error.	This	section	of	

the	document	will	also	include	any	features	that	were	not	implemented	and	the	

reason	they	were	not	implemented.	

	

There	 will	 also	 be	 an	 appendix	 that	 will	 include	 emails	 showing	 my	

correspondence	with	Round	Solutions,	the	providers	of	the	NanoTracker.	

	

	

	

	 7	

2	Project	Description	
	

2.1	What	is	AniMap	

	

AniMap	 is	 a	 proof	 of	 concept	 project	 that	 utilizes	 a	 multi-platform	 mobile	

application	and	a	remote	gps-tracking	device	to	determine	the	source	of	TB	in	a	

herd	of	cattle.	The	process	starts	when	the	tracking	device	that	is	placed	around	

the	animals	neck,	sends	 its	gps	coordinates	to	a	MySQL	database	that	 is	hosted	

on	pythonanywhere.	

	

The	application	user,	in	this	case	a	farmer,	can	then	use	the	application	to	view	

each	animal’s	latest	location	to	within	2-meter	accuracy.	They	will	also	be	able	to	

view	 the	 path	 the	 animal	 travelled	 around	 the	 field.	 Each	 coordinate	 pair	 is	

displayed	using	an	animal	 icon	on	a	map	which,	 if	clicked,	will	display	the	time	

and	date	the	location	was	taken	at.	

	

A	 core	 feature	 of	 AniMap	 is	 its	 ability	 to	 provide	 the	 farmer	 with	 valuable	

information	regarding	where	each	animal	is	spending	the	most	time	in	the	field.	

From	this	the	farmer	will	may	be	able	to	determine	the	source	of	TB	in	a	herd	of	

cattle	 if	 it	 has	 already	 been	 indicated	 to	 the	 farmer	 that	 there	 are	 infected	

animals	in	the	herd	by	a	vet.	

	

It	must	be	noted	that,	although	the	main	aim	of	this	project	 is	 to	try	and	prove	

that	 the	source	of	TB	 in	a	herd	of	cattle	can	be	 located	using	their	coordinates,	

this	device	can	be	used	on	any	animal,	and	therefore	the	users	of	this	application	

are	not	limited	to	farmers.	

	

2.2	Core	components	of	AniMap	

	

AniMap	 consists	 of	 three	 core	 components.	 These	 components	 are	 the	 remote	

tracking	device	(hereby	referred	to	as	the	NanoTracker),	the	mobile	application	

	 8	

and	 the	 flask	 API.	 Each	 of	 these	 components	 will	 be	 documented	 under	

individual	headings.	

	

2.3	NanoTracker	

	

2.3.1	Brief	Description	

	

The	 NanoTracker	 is	 a	 gps-tracking	 device	made	 by	 a	 German	 company	 called	

Round	Solutions	who	specialize	in	creating	and	distributing	device	relating	to	the	

IoT	and	M2M	markets.	The	device	comes	in	several	variants,	a	2g	module,	a	3g	

module	 specifically	 for	 European	 countries	 and	 another	 3g	 module	 for	 the	

American	 markets.	 The	 2g	 module	 was	 selected	 for	 this	 project	 as	 it	 was	

marginally	cheaper	than	its	3g	counterpart	by	€15.	The	2g	module	cost	€184	at	

the	 time	 of	 purchase	 although	 it	 currently	 costs	 €169.	 The	 main	 factor	 in	

choosing	 the	NanoTracker	was	based	on	 the	device	be	programmed	 in	python	

2.7.2	and	also	having	an	accompanying	software	development	kit.		

	

In	this	project,	the	device	functions	by	gathering	its	current	gps	coordinates	and	

time	which	it	then	sends	via	http	post	to	the	Flask	API	at	user	defined	intervals.	

The	NanoTracker	is	powered	by	a	380mAh	battery.	There	is	no	exact	battery	life	

as	such	as	it	is	dependent	on	what	the	user	sets	the	time	between	http	posts	to	

be.	The	NanoTracker	uses	a	nano-sim	to	send	data	to	the	Flask	API		that	is	hosted	

on	pythonanywhere.		It	is	also	important	to	note	that	to	interface	with	the	device	

on	your	computer	you	must	install	Virtual	Com	Port	drivers	which	are	linked	in	

the	NanoTracker	manual.	

	

To	upload	and	remove	python	scripts	to	the	device	a	software	package	called	RS-

Term-Plus	 is	 used	which	 is	 available	 on	 the	Round	 Solutions	website.	 The	RS-

Term-Plus	 package	 is	 used	 for	 a	 wide	 range	 of	 products	 so	 not	 all	 functions	

available	in	the	package	are	relevant	to	the	NanoTracker.	The	functions	from	the	

rsterm	 package	 that	 were	 relevant	 will	 be	 documented	 along	 with	 annotated	

screenshots	in	the	following	section.	

	 9	

	

2.3.1	Rsterm	

	

The	 following	screen	displayed	 in	 figure	1	 is	 the	 initial	 screen	of	 the	RS-Term-

Plus	package.	There	are	three	elements	of	this	screen	that	must	be	noted.	They	

are	 the	 Com	 Port	 value	 that	 is	 specific	 to	 the	 machine,	 the	 bit	 rate	 for	 data	

transfer.	As	displayed	 in	 figure	1	the	required	bit	rate	as	per	the	Nano	Tracker	

manual	is	115200.	Another	important	section	of	the	screen	is	the	send	command	

section	 which	 contains	 a	 button	 labeled	 AT.	 If	 the	 user	 has	 installed	 the	 VCP	

drivers	and	selected	the	correct	Com	Port,	pressing	the	AT	button	prints	“OK”	in	

the	message	box	which	is	displayed	in	figure	2.	This	is	used	to	determine	if	the	

NanoTracker	 is	 responsive.	 Underneath	 the	 attention	 command	 button	 is	 an	

input	field	and	a	send	button.	This	allows	the	use	manual	input	command	to	send	

to	the	device.	It	is	currently	populated	with	the	sequence	“aaa”.	This	command	is	

used	to	terminate	execution	of	the	currently	executing	script.	

	

	
Figure	1.	RS-Term-Plus	Opening	screen	

	

	 10	

	
Figure	2.	AT	Command	In	The	Python	screen	

	

	

There	are	five	buttons	on	the	python	screen	that	were	the	most	commonly	used	

throughout	 the	 project.	 They	 are	 the	 list	 scripts	 button	 which	 list	 the	 scripts	

currently	 on	 the	NanoTracker,	 the	 download	 script	 button	which	 downloads	 a	

script	 to	 the	 NanoTracker	 from	 the	 computer,	 the	 enable	 script	 button	 which	

sets	a	script	as	the	executing	script,	the	read	python	script	button	and	the	delete	

python	script.	The	buttons	are	all	indicated	in	Figure	3.	

	

	 11	

	
Figure	3.	Button	Functions	

	

There	 are	 three	 drop	down	 fields	 in	 Figure	 3	 associated	with	 the	 enable,	 read	

and	delete	 script	 buttons.	There	 are	 currently	populated	with	 the	 text	 “update	

with	AT#LSCRIPT”.	This	requires	the	user	to	press	the	list	scripts	button	which	

will	 then	 populate	 the	 drop	 down	 fields	 with	 all	 the	 scripts	 currently	 on	 the	

device.	

	

	

	

	

	

	

	

	
	
	

	 12	

	

2.4	Android	Application	

	

2.4.1	Brief	Description	

	

The	 AniMap	 mobile	 application	 was	 built	 using	 Adobe	 PhoneGap.	 Adobe	

PhoneGap	 is	 hybrid	 mobile	 application	 development	 framework	 that	 allows	

developers	to	create	applications	using	HTML,	CSS	and	JavaScript	that	can	then	

be	 built	 for	 multiple	 mobile	 platforms	 as	 opposed	 to	 creating	 individual	

applications	 for	 each	mobile	 platform.	 The	mobile	 application	 then	 sends	 data	

using	jQuery	to	a	python	Flask	API	that	is	hosted	on	pythonanywhere.	

2.4.2	Home	screen	

	
On	opening	the	application	the	user	is	presented	with	a	screen	displaying	three	

options.	 They	 are	 Login,	 Register	 or	 Change	 Password	 which	 can	 be	 seen	 in	

Figure	4.	 This	 page	 requires	no	backend	 functionality,	 as	 the	user	will	 only	be	

moving	to	another	page.	

	

	
									Figure	4.	Home	screen	

	 13	

2.4.3	Register	screen	

	

If	the	user	clicks	the	Register	button	they	are	redirected	to	the	Register	screen.	

They	 are	 then	 required	 to	 enter	 a	 username	 and	 password.	 They	 are	 also	

required	 to	 confirm	 their	 password	 to	 eradicate	 any	 potential	 errors	 in	 the	

password	 creation	 process.	When	 the	 user	 clicks	 the	 register	 button	 the	 form	

data	 is	 sent	 using	 jQuery	 to	 the	 Flask	 API.	 For	 this	 project	 all	 validation	 is	

performed	 in	 the	API.	 On	 the	Register	 screen	 in	 particular	 there	 are	 checks	 in	

place	 to	determine	 if	 the	user	has	 filled	 in	all	 the	 fields,	 if	 the	username	 is	not	

already	taken	and	that	both	password	fields	match.	If	any	of	this	validation	fails	

the	 user	 is	 presented	with	 an	 appropriate	 error	message	 describing	what	was	

wrong.	 On	 successful	 registration	 the	 user	 is	 automatically	 logged	 in	 and	

redirected	 to	 the	Menu	 screen.	Note	 all	 passwords	 are	 hashed	before	 they	 are	

stored	in	the	database.	

	

	

	
						Figure	5.	Register	screen	

	 14	

	

2.4.4	Change	Password	

	

If	the	user	clicks	the	Change	Password	button	they	are	redirected	to	the	Change	

Password	screen.	They	are	then	required	to	enter	their	username	and	password.	

Following	this	the	user	may	enter	a	new	password	which	they	must	match	in	the	

confirm	 password	 field.	 The	 validation	 on	 this	 screen	 consists	 of	 checking	 the	

user	 has	 not	 left	 any	 fields	 blank,	 their	 username	 and	 current	 password	 are	

correct	 and	 that	 the	 new	 password	 and	 confirmation	 of	 the	 new	 password	

match.	 In	 this	 case	 a	 successful	 scenario	 would	 result	 in	 the	 users	 password	

being	updated	in	the	register	table.	The	user	would	also	be	automatically	logged	

in	and	redirected	to	the	Menu	screen.	Note	all	passwords	are	hashed	before	they	

are	stored	in	the	database.	

	

			 	
													Figure	6.	Change	Password	screen	

	

	
	

	 15	

2.4.5	Login	screen	

	

Assuming	the	user	already	has	an	account	and	has	selected	the	login	option	the	

user	 then	advances	 to	 the	Login	screen.	The	 login	 in	 form	 is	quite	 small	which	

makes	for	easy	access	for	an	already	registered	user.	The	validation	undertaken	

on	this	screen	consists	of	checking	that	no	fields	are	left	blank,	checking	that	the	

user	 exists	 in	 the	 database	 and	 that	 the	 entered	 password	 is	 correct.	 On	

successful	login	the	user	is	redirected	to	the	Menu	screen.	

	

	
															 	 	 Figure	7.	Login	screen	

2.4.6	Menu	screen	

	

As	mentioned	in	the	previous	use	cases	the	success	scenario	of	each	results	in	a	

redirect	to	the	Menu	screen	which	will	be	displayed	over	two	images	as	the	user	

is	required	to	scroll	through	the	menu	to	see	all	the	available	options.	

	

	 16	

	 	
Figure	7.	Menu	screen	

2.4.6.1	Add	Animal	Profile	screen	

	

On	selection	of	 the	Add	Animal	Profile	option	the	user	 is	redirected	to	 the	Add	

Animal	 screen.	 This	 particular	 screen	 is	 one	 of	 the	 most	 densely	 populated	

screens	in	the	application	in	terms	of	user	input.	As	shown	in	Figure	8,	there	are	

multiple	fields	for	the	user	to	fill	in.	Firstly	the	user	is	required	to	enter	a	unique	

name	for	the	animal,	in	the	case	of	a	herd	of	cattle,	a	cows	tag	number	would	be	

an	appropriate	option.	Following	 this	 the	user	 is	 required	 to	 select	 the	 type	of	

animal	 from	a	 dropdown	 list,	 enter	 the	 breed	of	 the	 animal,	 enter	 the	 animals	

weight,	their	gender	and	the	number	of	the	sim	card	used	in	the	NanoTracker.	

	

Each	 input	 field	 is	 validated	 in	 the	 backend.	 As	 both	 the	 weight	 and	 tracking	

number	 are	 input	 fields	 of	 type	 number	 when	 the	 user	 clicks	 on	 this	 field	 a	

numeric	keypad	is	displayed	by	default	to	prevent	users	entering	letters.	

	

	 17	

Similarly	to	previous	functionalities,	on	submission	of	the	form	it	is	validated	to	

ensure	no	fields	are	empty.	In	a	success	scenario	the	animal	details	are	added	to	

the	Animal	table	in	the	database.	

	

	
				Figure	8.	Add	Animal	screen	

	

2.4.6.2	Create	Boundary	screen	

	

On	 selection	 of	 the	 Create	 Boundary	 menu	 option	 the	 user	 is	 redirected	 to	 a	

screen	that	is	split	to	show	a	map	and	some	input	fields	as	shown	in	Figure	9.	If	

there	 are	 no	 animals	 associated	with	 their	 account	 then	 they	 are	 prompted	 to	

add	an	animal	to	their	account	and	redirected	to	the	Add	Animal	screen.	

	

On	the	map	there	is	a	marker	which	the	user	can	drag	to	any	location	they	desire.	

This	point	on	the	map	will	then	be	used	as	the	center	of	a	boundary	that	will	be	

defined	by	the	user.	

	

	 18	

After	selecting	a	point	on	the	map	the	user	is	then	required	to	select	an	animal	

from	 the	 drop	 down	 list	 of	 animal	 names	 associated	 with	 their	 account.	

Following	 this	 they	 then	 enter	 the	 radius	of	 the	boundary	 they	wish	 to	 create.	

When	 the	 user	 clicks	 the	 Create	 Boundary	 button	 a	 text	 is	 sent	 to	 the	

NanoTracker	containing	the	coordinates	of	the	boundaries	center	point	and	the	

size	of	the	radius.	

	

Note,	although	the	Create	Boundary	use	case	functions	as	documented	above,	the	

entire	 functionality	 could	 not	 be	 completed	 due	 to	 incorrect	 documentation	

provided	by	Round	Solutions	for	the	NanoTracker.	

	

	
Figure	9.	Create	Boundary	screen	

	
	

	

	
	
	

	 19	

2.4.6.3	Latest	Location	screen	

	

On	choosing	the	Latest	Location	menu	option,	a	request	is	sent	to	the	Flask	API	

that	retrieves	the	latest	location	of	all	the	animals	associated	with	the	user.	If	no	

animals	 are	 associated	with	 the	 user	 they	 are	 prompted	 to	 add	 an	 animal	 and	

redirected	to	the	Add	Animal	screen.	

	

Assuming	 there	 are	 animals	 associated	 with	 the	 user,	 a	 satellite	 map	 that	 is	

implemented	 using	 Mapbox	 is	 displayed	 with	 each	 of	 the	 animal(s)	 latest	

locations	 as	 shown	 in	 Figure	 10.	 If	 the	 user	 clicks	 on	 the	 animal	 icon	 a	 popup	

displaying	the	date	and	time	the	location	was	recorded	is	displayed.	

	

															 	
Figure	10.	Latest	Location	screens	

	

	

	
	

	 20	

2.4.6.4	Analyse	Paths	screen	

	

If	 the	 user	 clicks	 the	 Analyse	 Paths	 option,	 they	 are	 then	 redirected	 to	 a	 page	

containing	four	drop	down	boxes.	Like	previous	use	cases	if	there	are	no	animals	

associated	with	the	users	account	then	they	are	prompted	accordingly.	

	

In	a	successful	scenario	where	the	user	has	one	or	more	animals	associated	with	

their	 account	 they	 are	 required	 to	 select	 two	 animals,	 a	 start	 date	 and	 an	 end	

date.	

	

If	 for	 example	 the	 user	 only	 wants	 to	 view	 one	 animals	 path,	 they	must	 then	

select	the	same	animal	in	both	animal	selection	drop	downs	as	shown	in	Figure	

11.	The	user	must	also	select	a	start	and	end	date	that	will	be	used	to	fetch	the	

data.	 If	 the	user	 sets	 an	 end	date	 that	 occurs	before	 a	 start	date	 then	 they	 are	

prompted	to	re-enter	the	dates.	Similarly	to	previous	use	cases	a	check	for	empty	

fields	is	also	carried	out.	

	

Once	the	data	has	been	successfully	retrieved	a	satellite	map	is	displayed	which	

shows	the	specified	animals	paths.	 If	 the	user	clicks	on	an	animal	 icon	a	popup	

displaying	the	date	and	time	the	location	was	recorded	is	displayed.	

	 	

	 21	

	 	
Figure	11.	Analyse	Paths	screens	

	

2.4.6.5	GPS	Configuration	screen	

	

The	 purpose	 of	 this	 screen	 is	 to	 remotely	 configure	 the	 NanoTracker	 via	 text	

using	a	PhoneGap	SMS	plugin.	When	 the	user	 clicks	 this	menu	option	 they	are	

redirected	to	a	screen	that	requires	them	to	select	an	animal,	whose	tracker	they	

wish	 to	 configure,	 select	 a	 time	 metric	 and	 the	 amount	 of	 time	 they	 want	

between	GPS	requests.	An	example	of	user	input	is	displayed	in	Figure	12.	

	

In	a	successful	scenario	the	application	sends	an	SMS	to	the	NanoTracker	in	the	

form	 interval:120,	 for	 example.	 The	NanoTracker	 then	 receives	 this	 SMS	 and	

parses	the	message	to	extract	everything	after	the	colon	and	before	comma.	This	

value	 is	 then	 used	 to	 force	 the	 device	 to	 sleep,	 in	 this	 case	 for	 120	 seconds,	

between	each	GPS	request.	

	 	

	 22	

	
Figure	12.	GPS	Configuration	screen	

	

2.4.6.6	Cluster	Locations	screen	

	

This	 functionality	 could	 potentially	 be	 incredibly	 useful	 in	 determining	 the	

source	 of	 TB	 in	 a	 herd	 of	 cattle,	 in	 conjunction	 with	 some	 of	 the	 previously	

mentioned	use	cases.	When	the	user	selects	the	Cluster	Locations	option	in	the	

Menu,	 if	 there	 is	not	a	sufficient	amount	of	data	 for	 the	clustering	algorithm	to	

take	place	the	user	will	be	alerted	to	this.	

	

Assuming	 the	user	has	a	 sufficient	amount	of	data	 to	perform	the	clustering	of	

locations	they	will	be	redirected	to	a	screen	where	they	will	be	required	to	select	

from	two	drop	down	lists.	They	will	also	be	required	to	select	a	start	date	for	the	

data	retrieval.	On	submission	of	 these	 inputs	 the	user	will	be	presented	with	a	

satellite	map	which	will	display	the	location	of	each	cluster.	If	the	user	clicks	on	a	

cluster,	information	about	each	cluster	will	be	displayed	in	a	pop-up	as	shown	in	

Figure	13.	

	

	 23	

In	terms	of	the	clustering	algorithm,	that	will	be	discussed	in	more	detail	when	

documenting	the	API.		

	
Figure	13.	Cluster	Locations	screen	

	

2.4.6.7	Update	Animal	Profile	screen	

	

As	 information	 relating	 to	 the	 animal	 my	 change	 over	 time,	 the	 user	 has	 the	

ability	 to	 update	 the	 animals	 profile	 by	 selecting	 the	 Update	 Animal	 Profile	

option	from	the	menu.	The	user	selects	one	of	the	animals	associated	with	their	

account	 from	 the	 dropdown	 list	 which	 then	 populates	 all	 the	 fields	 with	 the	

animals	 information.	The	 information	 in	each	of	 these	 fields	can	be	changed	as	

deemed	appropriate	by	the	application	user	as	shown	in	Figure	14.	

	

Similarly	 to	 previous	 use	 cases	 the	 user	 will	 be	 alerted	 appropriately	 if	 they	

attempt	to	update	the	animals	profile	with	blank	fields.	

	

	 24	

	
Figure	14.	Update	Animal	screen	

	

2.4.6.8	Delete	Animal	Profile	screen	

	

The	Delete	Animal	Profile	use	case	is	very	simple	in	its	approach.	Once	the	user	

selects	the	Delete	Animal	Profile	option	from	the	menu	they	are	redirected	to	a	

screen	which	requires	them	to	select	an	animal	associated	with	their	account	

from	a	drop	down	list.	Once	the	user	clicks	the	delete	button	all	data	relating	to	

this	animal	from	all	database	tables	is	removed.	This	use	case	is	displayed	in	

Figure	15.	

	

	 25	

	
Figure	15.	Delete	Animal	Profile	screen	

2.4.6.9	Logout	Menu	Option	

	

Like	the	Delete	Animal	Profile	use	case	the	Logout	use	case	quite	simple	in	its	

approach	also.	Once	the	user	click	this	button	a	logged	in	flag	in	the	Register	

database	table	is	set	to	0.	The	user	is	then	redirected	to	the	Home	screen.	

	

	
Figure	16.	Logout	Menu	Option	

	 26	

2.5	Flask	API	
	

The	Python	Flask	API	is	a	substantial	component	of	the	entire	system.	Not	only	is	

the	mobile	 application	 communicating	with	 the	 API	 but	 the	 NanoTracker	 also	

sends	 data	 to	 the	 API	 that	 is	 then	 inserted	 into	 the	 relevant	 tables	 in	 the	

database.	For	each	of	 the	 functionalities	mentioned	 in	 the	previous	section,	 the	

API	checks	and	maintains	an	“isLoggenIn”	attribute	 in	 the	Register	 table	which	

functions	as	a	session	value.	This	column	is	of	type	Tiny	Int.	If	the	“isLoggenIn”	

value	 is	0	 it	means	the	user	 is	either	 logged	out	or	their	session	has	timed	out.	

Therefore	 before	 attempting	 to	 perform	 any	 functions	 the	 API	 checks	 that	 the	

“isLoggenIn”	value	associated	with	that	user	is	1	otherwise	they	are	redirected	to	

the	Home	screen.	

	

2.5.1	MySQL	Database	

	

The	 types	 of	 databases	 can	 generally	 be	 divided	 into	 two	 categories,	 SQL	 and	

NoSQL	 databases.	 SQL	 databases	 are	 traditionally	more	 useful	 for	 data	 that	 is	

tabular	 in	 nature	 whereas	 NOSQL	 are	 generally	 used	 where	 data	 is	 more	

unstructured.	

	

For	this	project	a	MySQL	database	was	selected	and	hosted	on	pythonanywhere.	

The	decision	of	using	a	MySQL	database	was	heavily	 influenced	by	 the	 tabular	

structure	of	the	original	database	design.	Although	the	database	design	changed	

over	the	course	of	the	project,	a	MySQL	database	still	remained	the	most	suitable	

overall.	

	

	

	 	

	 27	

3	Conformance	To	Specification	and	Design	

	

As	 the	 project	 progressed	 it	 became	 apparent	 that	 there	 would	 need	 to	 be	

adjustments	 made	 to	 the	 functional	 specification	 use	 cases	 as	 well	 as	 the	

database	design.	 	A	description	of	 the	 changes	 and	 the	 reasoning	behind	 them	

will	be	documented	in	the	upcoming	sections	of	this	document.	

	

3.1	Use	Case	Changes		

	

3.1.1	Omitted	Use	Cases	

	

There	was	a	small	selection	of	use	cases	that	were	removed	over	the	duration	of	

the	project	for	various	reasons	which	I	will	now	explain.	

	

3.1.1.1	Isolate	Animal	Use	Case	

	

The	 Isolate	 Animal	 functionality	 was	 initially	 specified	 so	 that	 the	 application	

user	could	add	animals	to	a	specific	table	if	the	were	suffering	from	some	ailment	

whether	 it	was	 an	 illness	 or	 injury.	 This	 table	would	 then	 have	 been	 used	 for	

other	 functionalities	 such	as	 the	Analyse	Paths	use	 case	where	 the	user	would	

only	be	able	to	look	at	the	paths	if	the	animals	in	this	table.	

	

This	use	case	was	omitted	as	it	was	an	unneccesary	step	and	added	unneccesary	

complications.	By	removing	this	functionality	it	made	implementing	the	Analyse	

Paths	 functionality	 easier	 and	 more	 effective.	 Instead	 of	 only	 allowing	 the	

application	view	the	paths	of	sick	or	injured	animals,	they	can	now	view	the	path	

of	any	animal	they	wish.	

	

	 28	

	

3.1.1.2	Store	User	Credentials	Use	Case	

	

This	 use	 case	 was	 not	 included	 in	 the	 project	 as	 it	 would	 currently	 serve	 no	

purpose.	 The	 only	 user	 credentials	 stored	 in	 the	 database	 are	 the	 application	

users	login	details	and	animals	associated	with	their	account.	

	

3.1.1.3	Retrieve	GPS	Data	Use	Case	

	

This	 functionality	 does	 exist	 in	 the	 project	 but	 it	 would	 technically	 be	 a	 sub	

function	of	other	use	cases.	Therefore	 it	 should	not	be	 included	as	 its	own	use	

case.	

	

3.1.2	Amended	Use	Cases	

	

Again,	as	the	project	progressed	it	became	apparent	that	some	use	cases	needed	

to	be	amended.	These	amendments	 ranged	 from	a	 change	 in	use	 case	name	 to	

changes	in	the	steps	involved	in	the	use	cases.	

	

3.1.2.1	Login	Use	Case	

	

The	 change	 to	 this	 use	 case	 was	 relatively	 small.	 Instead	 of	 the	 application	

opening	to	a	Login	screen	it	now	opens	on	the	Home	screen	which	gives	the	user	

three	 options.	 They	 are,	 Login,	 Register	 and	 Change	 Password	 buttons.	 On	

clicking	 any	 of	 these	 buttons	 the	 user	 is	 then	 redirected	 to	 the	 appropriate	

screen	as	documented	in	the	project	description.		

	

	

	 29	

	

3.1.2.2	Register	Use	Case	

	

The	Register	use	case	required	two	changes.	The	first	change	follows	the	changes	

made	to	the	login	screen	where	the	user	is	presented	with	the	Home	screen	and	

can	 then	 navigate	 to	 the	 Register	 screen	 by	 pressing	 the	 Register	 button.	 The	

second	 change	 was	 made	 to	 the	 login	 form	which	 added	 a	 confirm	 password	

field.	The	reasoning	behind	this	 field	was	to	remove	user	 input	error	where,	 in	

the	original	use	case,	the	user	would	create	a	username	and	password	but	wasn’t	

required	 to	 confirm	 that	 password	 by	 entering	 it	 again	 and	 ensuring	 the	 two	

passwords	matched.	

	

3.1.2.3	Logout	Use	Case	

	

As	 the	 application	 interface	 did	 not	 conform	 to	 the	 description	 given	 in	 the	

original	 Logout	 use	 case	 it	 was	 amended	 so	 that	 the	 Logout	 use	 case	 was	 a	

button	 on	 the	 main	 menu.	 Not	 only	 did	 it	 make	 implementing	 the	 use	 case	

simpler,	 it	 more	 importantly	 made	 it	 easier	 for	 the	 user	 to	 logout.	 Instead	 of	

having	 to	 click	 a	menu	 button	 in	 the	 top	 corner	 of	 the	 screen	 it	 is	 now	 easily	

accessible	as	an	option	in	the	Main	Menu	screen.	

	

3.1.2.4	Change	Password	Use	Case	

	

Like	the	Register	and	Login	use	cases,	the	navigation	to	this	use	case	changed.	On	

opening	the	application	the	user	is	presented	with	the	Home	screen	where	they	

press	the	Change	Password	button	which	redirects	them	to	the	Change	Password	

screen.	This	 screen	was	amended	so	 that	 it	now	asks	 the	user	 to	confirm	their	

new	password,	again	to	try	reduce	user	input	error.	

	

	

	 30	

	

3.1.2.5	Analyse	Path	Use	Case	

	

The	Analyse	Path	use	case	changed	so	that	the	user	could	select	to	animal	paths	

to	 view	 and	 also	 a	 start	 date	 and	 an	 end	 date.	 By	 selecting	 two	 animals	 the	

application	user	 can	directly	 see	 any	 common	areas	 traversed	by	 two	animals,	

for	 example,	 two	 cows	 with	 TB.	 By	 limiting	 the	 animal	 selection	 to	 two,	 it	

partially	 prevents	 them	 map	 from	 being	 cluttered	 with	 animal	 paths.	 The	

inclusion	of	start	and	end	dates	provides	the	same	purpose.	

	

	

3.1.2.6	Display	Current	Location	Use	Case		

	

The	first	change	to	this	use	case	is	it	has	been	renamed	as	Latest	Location.	This	

use	 case	 has	 also	 been	 made	 simpler	 and	 more	 effective	 by	 automatically	

displaying	 the	 latest	 location	 of	 all	 the	 animals	 associated	 with	 the	 user	 in	

comparison	to	the	original	use	case	where	user	input	was	required	to	select	one	

animal	 to	 view.	 	 The	 final	 change	 to	 this	 use	 case	 allows	 the	 user	 to	 click	 the	

animal	 icon	 on	 the	map	which	 displays	 a	 popup	 informing	 the	 user	what	 date	

and	time	the	location	was	recorded.	

	

3.1.2.7	Set	GPS	Interval	Use	Case	

	

The	first	change	to	this	use	case	is	it	has	been	renamed	as	GPS	Configuration.	

One	 change	 to	 the	use	 case	 is	 that	 the	user	 is	 required	 to	 select	 a	 time	metric	

from	 the	 drop	down	 list.	 Also	 this	 use	 case	 now	 sends	 the	GPS	 Interval	 to	 the	

NanoTracker	device.	

	

	 31	

	

3.1.2.8	Store	GPS	Configuration	Use	Case	

	

The	main	change	with	this	functionality	is	that	the	Interval	is	now	stored	on	the	

NanoTracker	 device	 instead	 of	 within	 the	 application	 itself.	 When	 the	 GPS	

Interval	is	sent	to	the	NanoTracker,	the	interval	is	read	and	stored	in	a	text	file	

on	 the	device.	After	 the	NanoTracker	 sends	 its	 coordinates	 to	 the	 Flask	API,	 it	

opens	the	text	file,	reads	the	value	and	the	device	sleeps	for	that	amount	of	time	

before	sending	its	coordinates	again.	

	

3.1.2.9	Create	Boundary	Use	Case	

	

This	 use	 case	 differs	 from	 the	 original	 as	 the	 user	 is	 also	 required	 to	 pick	 the	

center	of	the	boundary	on	the	map.	The	final	change	to	this	use	case	that	is	not	

mentioned	in	the	original	is,	when	the	user	clicks	the	create	boundary	button	the	

application	 then	 sends	 the	 coordinates	 of	 the	 center	 of	 the	 boundary	 and	 the	

radius	of	the	boundary	to	the	NanoTracker.	

	

3.1.3	Additional	Use	Cases	

	

During	 the	 course	 of	 the	 project	 it	 became	 clear	 that	 some	 use	 cases	 were	

required	or	would	useful	for	application	users.	

3.1.3.1	Cluster	Locations	Use	Case	

	

This	 use	 case	 was	 an	 important	 addition	 to	 the	 application.	 The	 use	 case	

functions	 by	 requiring	 the	 user	 to	 select	 two	 values	 from	 the	 drop	 down	 lists	

provided.	 The	 first	 value	 represents	 the	 maximum	 distance	 a	 location	 can	 be	

from	 the	 center	 of	 a	 cluster.	 The	 second	 value	 specifies	 how	 many	 of	 the	

coordinates	 that	 fall	 within	 the	 distance	 of	 the	 center	 are	 required	 to	make	 a	

cluster.	For	example	if	the	cluster	distance	is	set	to	5	meters	and	the	number	of	

locations	per	cluster	is	set	to	5	then	a	satellite	map	will	be	displayed	show	every	

	 32	

cluster	 that	 has	 at	 least	 5	 recorded	 locations	 within	 5	 meters	 of	 the	 cluster	

centroid.	

	

This	is	use	case	was	implemented	using	a	python	package	called	sklearn.	Within	

this	 package	 there	 are	 numerous	 clustering	 algorithms	 available.	 The	 cluster	

algorithm	used	in	this	project	is	called	DBSCAN	(Density	Based	Spatial	Clustering	

of	Applications	with	Noise).	

	

The	 algorithm	 takes	 the	 two	 previously	 mentioned	 inputs	 along	 with	 an	

algorithm	 name	 and	 a	 distance	 metric	 as	 parameter.	 The	 algorithm	 used	 in	

DBSCAN	 for	 this	 project	was	 the	 ball	 tree	 algorithm	 uses	 a	 hyper-sphere	 data	

structure.	 This	 is	 a	 computationally	 expensive	 process	 if	 the	 data	 is	 now	well	

structured.	 The	 ball	 tree	 algorithm	 can	 be	 very	 efficient	 when	 there	 is	 high	

dimensionality	in	the	data	set.	In	this	application	there	is	low	dimensionality	as	

the	 algorithm	 is	 only	 working	 with	 longitude	 and	 latitude	 coordinates.	 The	

algorithm	works	 by	 picking	 two	 arbitrary	 points	 and	making	 them	 clusters	 it	

then	analyses	the	distance	of	all	neighboring	points	and	assigns	them	to	one	of	

the	clusters	if	the	meet	the	distance	criteria.	

	

The	 distance	 of	 the	 points	 to	 the	 centroid	 is	 determined	 by	 the	 Haversine	

formula.	This	 formula	uses	the	great	circle	technique	to	determine	the	shortest	

distance	between	 two	points	on	 the	 surface	of	 a	 sphere,	 in	 this	 case	 the	Earth.	

The	ball	 tree	algorithm	repeats	 the	previous	 steps	 recursively	until	 all	 clusters	

have	been	formed.	

	

The	 advantages	 of	 using	 DBSCAN	 over	 other	 clustering	 algorithms	 such	 as	 k-

means,	is	it	doesn’t	require	the	number	of	clusters	as	a	parameter.	It	determines	

the	number	of	clusters	automatically.	Also	it	allows	for	data	sets	with	outliers.	As	

the	algorithm	assigns	a	label	to	each	coordinate	pair	to	determine	which	cluster	

it	belongs	to,	it	marks	outliers	as	-1.	

	

	 33	

In	 this	 application	 the	DBSCAN	algorithm	 is	 used	 to	 return	 an	 array	 of	 cluster	

coordinates	which	are	 then	displayed	on	a	satellite	map.	 If	 the	user	clicks	on	a	

cluster,	information	regarding	that	animal	is	displayed	in	a	popup.	

	

3.1.3.2	Delete	Animal	Profile	Use	Case	

	

This	 use	 case	 was	 introduced	 to	 enable	 a	 user	 remove	 all	 data	 relating	 to	 an	

animal	 or	 animals	 from	 their	 profile.	 This	 would	 be	 particularly	 useful	 for	

farmers	where	animals	may	only	be	on	the	farm	for	a	short	period	of	time	before	

being	 sold	 for	 example.	 The	 use	 case	 is	 quite	 simple	 in	 functionality	 the	 user	

simply	 selects	 the	 Delete	 Animal	 Profile	 option	 from	 the	 menu	 which	 then	

redirect	 them	a	 screen	where	 they	 select	 an	animal	 from	a	dropdown	 list.	The	

user	 then	 clicks	 Delete	 Animal	 and	 all	 information	 regarding	 that	 animal	 is	

removed	from	the	database	tables.	

	

3.1.3.3	Speed	Alert	Use	Case	

	

This	use	case	was	introduced	to	alert	a	user	via	text	when	an	animal	surpasses	a	

certain	speed.	This	would	be	particularly	useful	 for	 sheep	 farmers	where	stray	

dogs	may	enter	a	field	and	begin	to	chase	the	sheep.	This	causes	particular	stress	

on	the	sheep	especially	with	ewes	that	are	in	lamb.		

	

3.1.4	Summary	of	Use	Case	Adjustments	

	

In	summary	there	were	a	lot	of	use	case	changes	mainly	due	to	the	authors	lack	

of	 experience	 in	 requirements	 gathering	 and	 application	 development.	

Noticeably	 the	 changes	 that	were	made	 over	 the	 duration	 of	 the	 project	 often	

reduced	 or	 removed	 unnecessary	 complexity	 and	 also	 improved	 the	 user	

interface.	

3.1	Database	Changes	

	

	 34	

The	 changes	 to	 the	database	also	 removed	unnecessary	 complexity	by	 limiting	

the	number	of	database	tables	to	three.	Those	tables	are,	the	Register	table,	the	

Animal	table	and	the	currentCoordinates	table	as	shown	in	Figure	17.	

	

	
Figure	17.	Database	Design	Diagram	

	

	

	

	 	

	 35	

4	Learning	Outcomes	

	

4.1	Technical	Outcomes	

	

Over	the	duration	of	the	project	I	was	required	to	learn	and	implement	various	

technologies	 that	were	new	 to	me.	This	was	 initially	quite	daunting	but	 it	was	

also	a	source	of	motivation	for	me	to	undertake	a	project	of	this	scale	which	I	had	

no	prior	experience	of.	

	

As	we	only	began	learning	Python	from	the	middle	of	September	I	was	nervous	

about	 using	 python	 and	 more	 specifically	 Flask	 which	 is	 a	 python	 web	

framework	for	my	backend.	Although	I	was	apprehensive	about	using	Python	as	

my	 backend	 technology	 it	 soon	 became	 apparent	 that	 it	 was	 quite	 an	 easy	

language	to	pick	up	in	a	relatively	short	space	of	time.	This	was	due	to	Pythons	

simple	 syntax	and	 from	 the	experience	of	 learning	other	 languages	 throughout	

the	 course.	 If	 the	 backend	 had	 been	 programmed	 in	 Java	 or	 C++	 there	 would	

have	been	a	sizeable	increase	in	complexity	in	my	opinion.	

	

Python	wasn’t	 the	only	 technology	 that	was	new	 to	me	 in	 this	project.	Despite	

having	used	JavaScript	before	I	had	never	used	jQuery.	Initially	I	found	it	difficult	

to	work	with	jQuery	but	as	the	project	progressed	it	become	more	apparent	how	

useful	a	library	it	is.	Adobe	PhoneGap	was	also	a	new	technology	to	me	but	due	

to	 the	 vast	 quantity	 of	 information	 available	 through	 their	 documentation	 and	

other	online	sources,	PhoneGap	provided	very	few	problems	throughout.	

	

Working	with	the	NanoTracker	was	also	completely	new	to	me.	This	proved	to	

be	the	most	difficult	aspect	of	the	project	due	to	the	lack	of	documentation	and	

also	some	crucial	errors	in	the	NanoTrackers	documentation	provided	by	Round	

Solutions.		

	

Overall,	I	have	gained	a	lot	of	knowledge	in	several	different	technologies	that	I	

would	otherwise	not	have	had	the	chance	to	work	with.	Undertaking	the	project	

	 36	

has	also	proven	 to	myself	 that	 I	 can	 complete	projects	of	 this	 scale.	 If	 I	was	 to	

undertake	 the	Project	again	 I	 feel	 I	 could	get	a	better	end	product	 in	a	 shorter	

time	frame	which	is	a	successful	outcome	in	my	opinion.		

	

4.1	Personal	Outcomes	

	
At	 the	 beginning	 of	 this	 project	 I	 was	 very	 apprehensive	 about	 my	 ability	 to	

complete	 a	 project	 of	 this	 scale	 based	 on	my	 lack	 of	 experience	 in	 application	

development.	 Although	 programming	 modules	 are	 undertaken	 in	 each	 of	 the	

four	year	throughout	the	Software	Engineering	course	they	cannot	prepare	you	

for	a	project	of	this	scale.	

	

By	completing	a	project	of	this	scale,	I	have	proven	to	myself	and	others	that	I	am	

capable	 of	 undertaking	 a	 large	 and	 complex	 piece	 of	 work	 and	 producing	 the		

required	 deliverables.	 The	 project	 provided	 me	 with	 multiple	 challenges	

throughout	 which	 made	 the	 whole	 process	 more	 interesting	 and	 therefore	

making	me	more	productive.	

	

Aside	 from	 gaining	 knowledge	 in	 new	 technologies	 I	 have	 also	 learned	 to	

organise	my	work	more	 efficiently.	 Time	management	 is	 crucial	when	 dealing	

with	 the	 project	 and	 the	 fourth	 year	 course	 in	 general.	 I	 have	 also	 learned	 to	

work	more	 independently	 during	 this	 project.	 Its	 often	 the	 case	with	 students	

that	 they	 go	 directly	 to	 a	 lecturer	 for	 example,	 in	 search	 of	 an	 answer.	While	

there	is	nothing	wrong	with	this	it	is	also	beneficial	to	learn	to	conduct	research	

on	your	own.	Personally	I	found	that	I	learned	a	lot	more	about	the	technologies	

by	adopting	this	approach.	

	

In	 hindsight	 I	 should	 have	 started	 programming	 even	 before	 iteration	 one	

started.	Personally	 I	 found	a	 lot	of	 time	was	spent	at	 the	beginning	of	 iteration	

two	trying	to	implement	some	basic	backend	functionalities	whereas	had	I	begun	

programming	earlier	i.e.	before	iteration	one,	I	could	have	been	more	productive	

in	iteration	two	and	three.	

	

	 37	

I	 would	 also	 advise	 any	 students	 undertaking	 this	 course	 next	 year	 to	 start	

working	on	project	from	day	one	and	give	it	the	time	that	 it	needs.	The	further	

you	progress	in	the	year	the	more	deadlines	there	are	for	each	subject,	so	having	

a	good	start	at	project	will	prove	beneficial	in	the	latter	half	of	the	year.	

	 	

	 38	

5	Project	Review	

5.1	What	Went	Right	

	

In	general	I	think	the	project	was	successful.	As	it	was	a	proof	of	concept	project	

and	the	concept	I	was	trying	to	prove	was	that	the	source	of	TB	in	herd	of	cattle	

could	 be	 determined	 by	 analyzing	 their	 locations,	 it	 was	 always	 going	 to	 be	

difficult	 to	 gauge	 the	 success.	 To	 adequately	 determine	 if	 the	 project	 was	

successful	would	require	having	each	cow	in	a	herd	of	cattle	being	tracked	for	at	

least	 a	 year	 as	 cattle	 are	 tested	 annually	 for	 TB.	 Hence	 it	 is	 quite	 difficult	 the	

gauge	the	success	of	this	project.	

	

Pythonanywhere	was	a	great	addition	to	the	project.	Being	able	to	host	your	API	

and	MySQL	database	for	free	was	an	excellent	aspect	of	pythonanywhere.	It	must	

also	 be	 noted	 that	 setting	 up	 a	 project	 to	 run	 on	 pythonanywhere	 probably	

couldn’t	be	made	any	simpler.	This	was	a	huge	advantage	during	the	project	as	it	

meant	 less	time	was	required	to	configure	pythonanywhere	which	meant	more	

time	could	be	dedicated	to	overall	project.	

	

Working	with	 the	 NanoTracker	was	 not	 a	 straightforward	 process	 but	 it	 does	

function	 as	 intended.	 There	 were	 some	 distinct	 advantages	 to	 using	 the	

NanoTracker.	 One	 of	 those	 advantages	was	 it	was	 programmed	 in	 Python	 and	

came	 with	 a	 software	 development	 kit.	 Another	 advantage	 was	 the	

NanoTrackers	compact	size.	When	putting	a	device	on	an	animal	regardless	of	its	

purpose	it	should	also	be	taken	into	consideration	how	it	fits	the	animal.	Again	as	

the	device	was	so	small	this	never	proved	to	be	a	problem.	

	 	

	 39	

5.2	What	Went	Wrong	
	
Over	 the	 duration	 of	 the	 project	 there	 were	 numerous	 problems	 encountered	

most	of	which	were	in	relation	to	the	NanoTracker.	The	first	of	these	problems	

occurred	in	the	very	early	stages	when	I	received	the	NanoTracker.	The	device	is	

interfaced	via	USB.	When	I	plugged	the	device	into	the	USB	ports	located	on	the	

top	 of	 my	 desktop	 case	 and	 tried	 to	 upload	 scripts	 to	 it	 on	 RS-Term	 I	 was	

presented	with	an	error	“Module	not	connected…please	check”.	This	error	lasted	

for	 approximately	 a	 week.	 After	 emailing	 Round	 Solutions	 about	 they	 were	

unable	to	tell	me	the	cause	of	the	error.	The	solution	to	this	error	happened	by	

chance	when	 I	 plugged	 the	 device	 into	 a	 USB	 port	 at	 the	 back	 of	 the	 desktop	

which	then	allowed	me	to	interface	with	the	device	correctly.	Although	this	was	

not	 documented	 in	 the	 NanoTracker	 manual	 I	 was	 told	 that	 this	 occurred	

because	the	USB	ports	at	the	back	of	the	computer	are	connected	directly	to	the	

motherboard.	

	

One	of	the	most	substantial	and	consequential	errors	encountered	relating	to	the	

NanoTracker	was	caused	by	incorrect	documentation	for	the	NanoTracker.	The	

NanoTracker	datasheet	 clearly	 states	 that	 the	2g	Module	 is	 implemented	using	

python	version	2.7.2.	One	questioning	the	Round	Solutions	staff	regarding	using	

external	Python	packages	on	the	NanoTracker,	I	was	told	that	the	package	must	

be	compatible	with	Python	version	1.5.2	and	uploaded	in	.pyc	format.		

	

Following	this	I	questioned	why	the	device	required	external	Python	packages	to	

be	 compatible	with	 Python	 version	 1.5.2	 despite	 it	 being	 documented	 that	 the	

NanoTracker	was	running	Python	version	2.7.2.	To	my	surprise	I	was	told	that	I	

had	 spotted	 an	 error	 in	 the	 documentation	 and	 that	 the	 device	 was	 actually	

running	Python	version	1.5.2.	

	

This	error	proved	very	costly	for	application.	It	meant	that	my	Create	Boundary	

functionality	 now	 serves	 no	 purpose	 as	 I	 cannot	 implement	 the	 Haversine	

formula	on	 the	NanoTracker	device	due	 to	 the	math	module	 in	Python	version	

1.5.2	 not	 supporting	 radians.	 Had	 Round	 Solutions	 not	 made	 this	 error	 the	

	 40	

Create	 Boundary	 functionality	 would	 have	 been	 implemented	 where	 the	

NanoTracker	would	send	a	text	to	the	user	when	an	animal	went	out	of	bounds.	

	
Another	problem	was	encountered	when	implementing	the	Speed	Alert	use	case.	

This	 problem	 was	 again	 a	 direct	 consequence	 of	 inadequate	 documentation	

provided	by	Round	Solutions.	The	problem	on	this	occasion	was	that	nowhere	in	

the	NanoTracker	manual	did	it	say	that	the	device	did	not	support	floating	point	

numbers.		

	

When	getting	the	speed,	the	speed	value	is	returned	in	knots	but	in	string	format.	

To	use	this	value	I	could	only	take	everything	up	to	the	decimal	point	meaning	a	

loss	of	precision.	Also	as	1	knot	is	equal	to	1.85	kph	it	meant	I	had	to	let	1	knot		

equal	 2	 kph	 to	 avoid	 using	 floating	 point	 numbers.	 Again	 this	meant	 a	 loss	 of	

precision.	As	this	error	and	the	previous	error	occurred	very	late	in	the	project	

where	 time	 was	 an	 issue	 I	 was	 left	 incredibly	 frustrated	 by	 Round	 Solutions	

standard	of	documentation.	

	

On	several	occasions	throughout	the	course	of	this	project	I	noticed	that	Round	

Solutions	had	been	updating	their	documentation	in	accordance	with	questions	I	

had	been	asking	them.	Although	this	is	a	positive,	they	did	in	turn	make	another	

error	 in	 the	 process	 of	 updating	 the	 documents	 to	 reflect	 my	 questions	 by	

leaving	out	an	entire	section	on	how	to	update	the	micro-controller	code.	Again	I	

noticed	 this	 error	 several	 weeks	 later	when	 I	 attempted	 to	 update	 the	micro-

controller	 code	 to	 prevent	 the	 accelerometer	 from	 causing	 the	 device	 to	 sleep	

after	10	minutes	of	inactivity.	When	I	questioned	them	about	how	to	update	the	

micro-controller	code	they	informed	me	that	they	had	left	out	this	section	in	the	

previous	update.	This	is	an	important	section	of	the	document	as	it	informs	the	

user	that	they	need	to	by	a	special	cable	and	accompanying	device	for	debugging	

the	 micro-controller.	 Fortunately	 I	 have	 not	 needed	 to	 update	 the	 micro-

controller	code	as	 the	movement	of	 the	animals	head	when	 they	are	grazing	 is	

enough	to	keep	the	device	awake.	

	

	 41	

Finally	another	problem	with	this	project	has	been	the	lack	of	unit	testing.	This	

was	due	to	 time	constraints.	Had	I	undertaken	unit	 testing,	which	 I	have	never	

done	 before,	 the	 time	 spent	 learning	 unit	 testing	 would	 have	 taken	 from	 the	

functionalities	in	the	end	product.	

	

Although	I	encountered	a	substantial	number	of	errors	during	the	project	I	have	

still	gained	a	lot	of	knowledge	in	each	of	the	technologies.	A	lot	of	this	knowledge	

was	gained	by	encountering	errors,	determining	what	caused	them	and	devising	

a	solution	to	solve	them.	

	

5.3	Future	Feature	
	
There	is	one	future	feature	that	is	not	implemented	in	my	project	that	I	feel	could	

be	incredibly	useful.	In	my	opinion	I	think	it	could	be	possible	to	preemptively	

diagnose	TB	in	a	herd	of	cattle	by	analysing	accelerometer	data	to	determine	

when	a	cow	has	coughed	and	the	frequency	between	coughs.	This	functionality	

could	be	very	effective	as	it	would	alert	the	farmer	to	the	animal	showing	signs	of	

TB.	The	farmer	could	then	use	this	information	to	isolate	the	animal	to	prevent	

the	TB	spreading	throughout	his/her	herd	which	provides	the	farmer	with	more	

financial	security	as	losing	an	cow	to	TB	is	quite	costly.		

	 	

	 42	

6	Acknowledgements	
	
	
	
Firstly	I	would	like	to	thank	my	project	supervisor,	Nigel	Whyte	for	all	his	help	

and	guidance	over	the	duration	of	the	project.	

	

I	would	also	like	to	thank	my	classmates	for	offering	their	opinion	regarding	the	

best	course	of	action	to	take	when	issues	arose	in	my	project.	

	

I	 would	 like	 to	 thank	 the	 Round	 Solutions	 staff	 for	 answering	 my	 numerous	

questions	 and	 providing	 me	 with	 vital	 information	 over	 the	 duration	 of	 the	

project	

	

Finally	 I	would	 like	 to	 thank	 the	 lecturing	 staff	 for	 fielding	any	question	 I	may	

have	asked	throughout	the	year	regarding	my	project.	

	 	

	 43	

Appendix	A.	USB	Port	Complication	Correspondence	
	

	
	

	

	 44	

	

	
	

	
	
	
	
	

	 45	

Appendix	B.	Incorrect	Python	Version	Correspondence	
	

	
	

	

	
	 	

	 46	

	
	 	

	 47	

Appendix	C.	Missing	Micro-Controller	Documentation	
	

	
	

	 	

	 48	

Appendix	D.	Floating	Numbers	Support	Correspondence	

	
	
	

	
	

	 	

	 49	

	

